Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Signal Transduct Target Ther ; 8(1): 194, 2023 05 09.
Article in English | MEDLINE | ID: covidwho-2317960

ABSTRACT

Viral infection in respiratory tract usually leads to cell death, impairing respiratory function to cause severe disease. However, the diversity of clinical manifestations of SARS-CoV-2 infection increases the complexity and difficulty of viral infection prevention, and especially the high-frequency asymptomatic infection increases the risk of virus transmission. Studying how SARS-CoV-2 affects apoptotic pathway may help to understand the pathological process of its infection. Here, we uncovered SARS-CoV-2 imployed a distinct anti-apoptotic mechanism via its N protein. We found SARS-CoV-2 virus-like particles (trVLP) suppressed cell apoptosis, but the trVLP lacking N protein didn't. Further study verified that N protein repressed cell apoptosis in cultured cells, human lung organoids and mice. Mechanistically, N protein specifically interacted with anti-apoptotic protein MCL-1, and recruited a deubiquitinating enzyme USP15 to remove the K63-linked ubiquitination of MCL-1, which stabilized this protein and promoted it to hijack Bak in mitochondria. Importantly, N protein promoted the replications of IAV, DENV and ZIKV, and exacerbated death of IAV-infected mice, all of which could be blocked by a MCL-1 specific inhibitor, S63845. Altogether, we identifed a distinct anti-apoptotic function of the N protein, through which it promoted viral replication. These may explain how SARS-CoV-2 effectively replicates in asymptomatic individuals without cuasing respiratory dysfunction, and indicate a risk of enhanced coinfection with other viruses. We anticipate that abrogating the N/MCL-1-dominated apoptosis repression is conducive to the treatments of SARS-CoV-2 infection as well as coinfections with other viruses.


Subject(s)
COVID-19 , Coinfection , Zika Virus Infection , Zika Virus , Humans , Animals , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , SARS-CoV-2 , COVID-19/genetics , Virus Replication/genetics , Ubiquitin-Specific Proteases
2.
Viruses ; 15(1)2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2216942

ABSTRACT

Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Humans , Male , Antibodies, Viral/metabolism , Flavivirus/metabolism , Proteins/metabolism , Viral Envelope Proteins/metabolism , Zika Virus/physiology
3.
Adv Sci (Weinh) ; 9(3): e2103248, 2022 01.
Article in English | MEDLINE | ID: covidwho-1527412

ABSTRACT

COVID-19 is infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and can cause severe multiple organ injury and death. Kidney is one of major target organs of COVID-19 and acute kidney injury (AKI) is common in critically ill COVID-19 patients. However, mechanisms through which COVID-19 causes AKI remain largely unknown and treatment remains unspecific and ineffective. Here, the authors report that normal kidney-specifically overexpressing SARS-CoV-2 N develops AKI, which worsens in mice under ischemic condition. Mechanistically, it is uncovered that SARS-CoV-2 N-induced AKI is Smad3-dependent as SARS-CoV-2 N protein can interact with Smad3 and enhance TGF-ß/Smad3 signaling to cause tubular epithelial cell death and AKI via the G1 cell cycle arrest mechanism. This is further confirmed in Smad3 knockout mice and cells in which deletion of Smad3 protects against SARS-CoV-2 N protein-induced cell death and AKI in vivo and in vitro. Most significantly, it is also found that targeting Smad3 with a Smad3 pharmacological inhibitor is able to inhibit SARS-CoV-2 N-induced AKI. In conclusion, the authors identify that SARS-CoV-2 N protein is a key mediator for AKI and induces AKI via the Smad3-dependent G1 cell cycle arrest mechanism. Targeting Smad3 may represent as a novel therapy for COVID-19-asscoaited AKI.


Subject(s)
Acute Kidney Injury , COVID-19 , Coronavirus Nucleocapsid Proteins , G1 Phase Cell Cycle Checkpoints , SARS-CoV-2 , Smad3 Protein , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/virology , Animals , COVID-19/genetics , COVID-19/metabolism , Cell Line , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Knockout , Phosphoproteins/genetics , Phosphoproteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism
4.
Viruses ; 13(1)2020 12 30.
Article in English | MEDLINE | ID: covidwho-1389523

ABSTRACT

SARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-ß) production. N protein repressed IFN-ß production induced by poly(I:C) or upon Sendai virus (SeV) infection. We noted that N protein also suppressed IFN-ß production, induced by several signaling molecules downstream of the retinoic acid-inducible gene I (RIG-I) pathway, which is the crucial pattern recognition receptor (PRR) responsible for identifying RNA viruses. Moreover, our data demonstrated that N protein interacted with the RIG-I protein through the DExD/H domain, which has ATPase activity and plays an important role in the binding of immunostimulatory RNAs. These results suggested that SARS-CoV-2 N protein suppresses the IFN-ß response through targeting the initial step, potentially the cellular PRR-RNA-recognition step in the innate immune pathway. Therefore, we propose that the SARS-CoV-2 N protein represses IFN-ß production by interfering with RIG-I.


Subject(s)
COVID-19/immunology , DEAD Box Protein 58/metabolism , Interferon-beta/metabolism , Nucleocapsid Proteins/metabolism , SARS-CoV-2/metabolism , A549 Cells , Animals , DEAD Box Protein 58/genetics , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions/immunology , Humans , Protein Interaction Domains and Motifs , Receptors, Immunologic , Signal Transduction
5.
J Med Virol ; 92(4): 424-432, 2020 04.
Article in English | MEDLINE | ID: covidwho-827679

ABSTRACT

Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.


Subject(s)
Coronavirus Infections/immunology , Coronavirus/immunology , Adaptive Immunity , Animals , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , B-Lymphocytes/immunology , Coronavirus/classification , Coronavirus/physiology , Coronavirus/ultrastructure , Coronavirus Infections/pathology , Dendritic Cells/immunology , Humans , Immunity, Innate , Inflammation , Lung/immunology , Lung/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL